

<u>Calculation of the RMS of a Continuous Sinusoidal Wave</u> <u>Over Various Intervals</u>

Prepared By: Zara Makki Associate Engineer 6 / 26 / 2019

Softstuf Inc.

US Domestic: 1-800-818-3463 International: 1-215-922-6880 Fax: 1-609-677-8736

PO Box 40245 Philadelphia, PA 19106

www.softstuf.com

Summary

Interval	RMS Value
$0 \rightarrow T$	$I_{Max.}(0.707)$
0 → 0.5 <i>T</i>	$I_{Max.}(0.707)$
0 → 0.25 <i>T</i>	$I_{Max.}(0.707)$
$0 \rightarrow 0.125T$	$I_{Max.}(0.426)$
$0.1T \rightarrow 0.35T$	$I_{Max.}(0.896)$
$0.3T \rightarrow 0.55T$	$I_{Max.}(0.559)$
$0.7T \rightarrow 0.95T$	$I_{Max.}(0.829)$
$0.25T \rightarrow 0.375T$	$I_{Max.}(0.905)$
$0.8T \rightarrow 0.925T$	$I_{Max.}(0.755)$

RMS Formula for a Continuous Sinusoidal Function

$$RMS = \sqrt{\frac{1}{b-a}} \int_{a}^{b} [f(x)]^{2} dx$$

$$= \sqrt{\frac{1}{x_{2}T - x_{1}T}} \int_{x_{1}T}^{x_{2}T} [I_{Max} \sin(\omega t)]^{2} dt \quad and T = Period$$

$$Power Reducing Formula: \quad \sin^{2}u = \frac{1 - \cos 2u}{2}$$

$$= \sqrt{\frac{I_{Max}^{2}}{T(x_{2} - x_{1})}} \int_{x_{1}T}^{x_{2}T} \frac{1 - \cos(2\omega t)}{2} dt$$

$$= \sqrt{\frac{I_{Max}^{2}}{2T(x_{2} - x_{1})}} \left[t - \frac{1}{2\omega} \sin(2\omega t) \right]_{x_{1}T}^{x_{2}T}$$

$$= \sqrt{\frac{I_{Max}^{2}}{2T(x_{2} - x_{1})}} \left[\left(x_{2}T - \frac{1}{2\omega} \sin(2\omega x_{2}T) \right) - \left(x_{1}T - \frac{1}{2\omega} \sin(2\omega x_{1}T) \right) \right]$$

$$Angular Frequency: \quad \omega = \frac{2\pi}{T}$$

$$= \sqrt{\frac{I_{Max}^{2}}{2T(x_{2} - x_{1})}} \left[\left(x_{2}T - \frac{T}{4\pi} \sin\left(\frac{4\pi x_{2}T}{T}\right) \right) - \left(x_{1}T - \frac{T}{4\pi} \sin\left(\frac{4\pi x_{1}T}{T}\right) \right) \right]$$

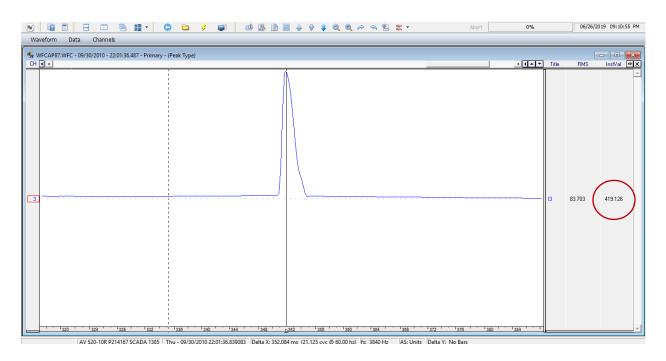
$$= I_{Max} \int_{a}^{b} \frac{4\pi x_{2} - \sin(4\pi x_{2}) - 4\pi x_{1} + \sin(4\pi x_{1})}{8\pi(x_{2} - x_{1})}$$

The above equation is useful when approximating the RMS value of a sinusoidal waveform over various intervals. For the interval $x_1=0$ to $x_2=1$ the equation above simplifies to the well-known equation $I_{Max.}/\sqrt{2}$. However, for an interval that does not contain the peak of the waveform such as $x_1=0$ to $x_2=1/8$, the equation simplifies to $I_{Max.}\sqrt{(\pi-2)/2\pi}$. Furthermore, intervals that contain the peak but do not start from zero also do not simplify to the well-known RMS equation. Because of this it is important to calculate the RMS value using the true discrete formula that is shown on the next page.

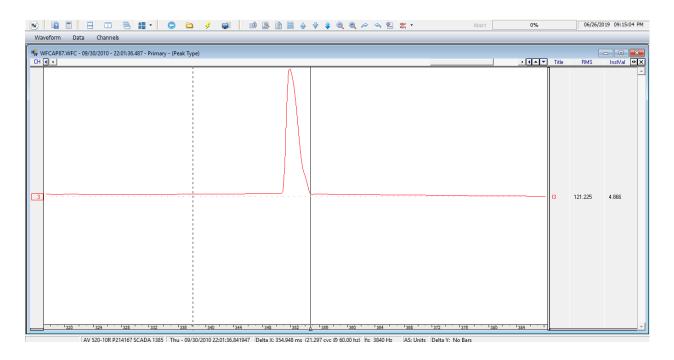
$$I_{RMS} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_1^2}$$

This formula calculates the RMS value using each data sample rather than approximating the waveform as a sinusoid. The equation above therefore produces a more precise RMS value than the equation shown on the previous page. The true RMS value can be calculated using Wavewin as shown below.

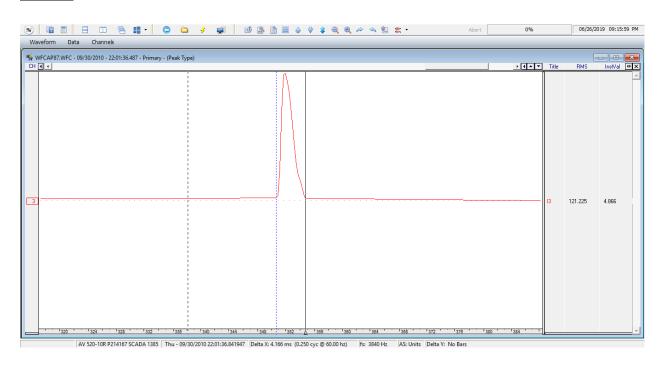
Step 1: Isolate the waveform.



Step 2: Normal click at the end of the pulse.



Step 3: Opposite click at the beginning of the pulse.



Step 4: In the Waveform menu, click Set RMS Bar and read the RMS value.

